
A SophosLabs technical paper May 2018

“VPNFilter” botnet:
a SophosLabs
analysis

By Sergei Shevchenko, Threat Research Manager, SophosLabs

2

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

Contents

First stage implant	 3

Second stage payload	 6

Third stage plugin 	 8

Conclusion	 9

3

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

A technical investigation of the malicious components
involved in the attack that infected over 500,000 routers
and network storage devices.
By Sergei Shevchenko, Threat Research Manager, SophosLabs

Date: May 23rd, 2018

Thanks to the Cyber Threat Alliance, the SophosLabs researchers were provided early

access to malware samples collected by Cisco TALOS team in their research of the

VPNFilter botnet activity. Besides updating our protection data, we also had a chance to

take a closer look at the attack components and the 3 stages of the attack. Here is our

findings.

First stage implant
The First stage implant

(0e0094d9bd396a6594da8e21911a3982cd737b445f591581560d766755097d92) is

compiled as a x86 ELF executable.

This executable was first submitted to VirusTotal on June 12 , 2017 from a user in Taiwan.

According to VirusTotal, the submitted file has a filename:

	 C:\Users\chli\Documents\qsync.php

Possibly, the file was fetched from a remotely hosted script called qsync.php, using a

Windows system. However, it’s not clear how this sample was used to compromise the

devices.

When run, the implant schedules itself to be executed periodically, by modifying crontab

(cron table) file.

The cron format1 has five time and date fields: minute, hour, day of month, month, and day

of week. If a value is specified as */step, execution takes place at every interval or step

through the unrestricted range.

By appending the schedule argument “*/5 * * * *” to the crontab, the implant is scheduled

to be activated every five minutes:

	 fd = open_file(“/etc/config/crontab”, “a”);

	 _fd = fd;

	 if (fd)

	 {

	 format_sys_write(fd, “*/5 * * * * %s\n”, (int)&fname);

	 fd = close(_fd);

	 }

1 https://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/

c0054381.html

https://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/c0054381.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_9.5.0/com.ibm.db2.luw.sql.rtn.doc/doc/c0054381.html

4

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

The implant keeps its critical strings encrypted. For that, it relies on a modified RC4

algorithm. In a normal RC4 implementation, the RC4 initialization routine calculates an

index into the state table, using the key. Next, two bytes in the state table are swapped in

place, where the first byte is pointed by the incremented index i, and the second one - by

the newly calculated index index2, as shown below:

	 #define swap_byte(a, b) {swapByte = a; a = b; b = swapByte;}

	 for (i = 0; i < 256; i++)state[i] = i;

	 key_index = 0;

	 index2 = 0;

	 for (i = 0; i < 256; i++)

	 {

	 index2 = (key[key_index] + state[i] + index2) & 0xFF;

	 swap_byte(state[i], state[index2]);

	 if (++key_index == key_size)key_index = 0;

	 }

The implant however, initializes the state table differently. Instead of permuting the state

table by swapping the bytes in it, it simply applies XOR to the state table, using the same

RC4 key.

Apparently, this flavor of RC4 initialization is known to be used by BlackEnergy2.

	 for (i = 0; i < 256; i++)state[i] = i;

	 key_index = 0;

	 for (i = 0; i < 256; i++)

	 {

	 state[i] ^= key[key_index];

	 if(++key_index == key_size)key_index = 0;

	 }

The RC4 key is a four character string hard-coded as “%^:d”. The rest of the RC4

implementation is identical to the standard algorithm.

In total, the body of the implant contains 12 encrypted strings. Each encrypted string is

stored as a string length that takes one byte, followed with the encrypted string itself.

5

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

Once decrypted these strings become:

ÌÌ 	/var/run/client.crt

ÌÌ /var/run/client.key

ÌÌ /var/run/client_ca.crt

ÌÌ 0.3.9qa

ÌÌ /var/run/msvf.pid

ÌÌ http[://]toknowall.com/manage/content/update.php

ÌÌ /var/vpnfilter

ÌÌ /update/test

ÌÌ http[://]photobucket.com/user/nikkireed11/library

ÌÌ http[://]photobucket.com/user/kmila302/library

ÌÌ http[://]photobucket.com/user/lisabraun87/library

ÌÌ http[://]photobucket.com/user/katyperry45/library

The first three strings are the filenames where the implant saves three client certificates,

hard-coded within its own body. These client-side SSL certificates are used for

authenticated requests to the C2 server, over HTTPS (port 443).

The version number “0.3.9qa” is saved into the file /var/run/msvf.pid.

The /var/vpnfilter is used as a temporary filename for the downloaded files.

The implant relies either on hard-coded Photobucket URLs or Toknowall C2 website

to fetch the images. The images are used to extract a second stage server IP from the

images’ EXIF metadata.

Next, a payload module is fetched from the second stage server, using a URL path

/update/test. The downloaded module is saved as /var/vpnfilter, assigned execution

permission with the chmod(511) command, then executed with the sys_execve()
system call.

2 https://www.secureworks.com/research/blackenergy2

https://www.secureworks.com/research/blackenergy2

6

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

Second stage payload: a backdoor trojan
The second stage payload fetched by the implant

(8a20dc9538d639623878a3d3d18d88da8b635ea52e5e2d0c2cce4a8c5a703db1) is a

backdoor trojan compiled as x86 ELF executable.

Just like the first stage implant, its critical strings are encrypted using the same method.

The RC4 key is different this time: “g&*kdj$dg0_@@7’x”.

The decrypted strings expose backdoor commands, IP addresses of C2, and some other

configuration parameters.

For example, the backdoor is able to accept and execute the following remote commands:

ÌÌ download - download remote file, save it as /var/tmp/vpn.tmp

ÌÌ reboot - terminate current process with sys_exit() system call

ÌÌ restart - reboot the device with sys_reboot() system call;

ÌÌ delay - appears to invoke delayed reboot

ÌÌ copy - read local file contents

ÌÌ exec - execute command or another plugin, using sys_

execve() system call with the following shells:

	 /bin/sh

	 /bin/ash

	 /bin/bash

	 /bin/shell

ÌÌ kill - terminate process(es) with the sys_kill() system call,

delete own files and directories, such as:

	 /var/run/tord

	 /var/run/

	 /var/run/vpn.pid

	 /var/tmp/vpn.tmp

	 etc.

ÌÌ pxs - set C2 proxy, i.e. the module contains 2 hard-coded proxies in it:

	 217.12.202.40

	 91.121.109.209

ÌÌ port - set proxy port

ÌÌ tr, mds, tor, me - set other configuration parameters

7

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

In its communications, the backdoor relies on a user agent string randomly selected from a

list of nine strings:

user_agent = user_agents[PRNG() % 9];

where user_agents table consists of:

ÌÌ Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:52.0) Gecko/20100101 Firefox/52.0

ÌÌ Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox/52.0

ÌÌ curl/7.47.0

ÌÌ Wget/1.17.1 (linux-gnu)

ÌÌ git/2.7.4

ÌÌ Google Chrome/64.0.3282.140 Windows

ÌÌ Google Chrome/64.0.3282.140 Linux

ÌÌ Lynx/2.8.8pre.4 libwww-FM/2.14

ÌÌ python-requests/2.18.4

Just like the implant, the backdoor communicates with its proxies via a SSL connection,

relying on client-side SSL certificates.

The module tries to determine the presence of TOR by parsing socket info from /proc/net/
tcp. For each enumerated socket descriptor, it then tries to find a file descriptor (by using a

method described here3) to a socket that has open connection on port 9050, that is used by

TOR.

With the TOR module installed as a third stage plugin, the communication will take place via

the following .onion domains:

ÌÌ 	6b57dcnonk2edf5a.onion/bin32/update.php

ÌÌ 	tljmmy4vmkqbdof4.onion/bin32/update.php

Backdoor modules built for different platforms are almost identical in their functionality. The

strings are encrypted using the same key.

A subtle difference exists in the internal platform ID parameters. For example, x86 module

uses IDs:

ÌÌ 	pDJOSERi686QNAPX86 or pPRXi686QNAPX86

ÌÌ i686

Backdoor module built for ARM CPU may have these parameters set to:

ÌÌ 	pDJOSERarmv5lQNAP_ARM

ÌÌ 	armv5l

Backdoor compiled for MIPS:

ÌÌ pDJOSERmipsDGN2200V4

ÌÌ 	mips

8

“VPNFilter” botnet: a SophosLabs analysis

A SophosLabs technical paper May 2018

Third stage plugin
A Third stage plugin

(afd281639e26a717aead65b1886f98d6d6c258736016023b4e59de30b7348719)

is a TOR client. Compiled as x86 ELF executable, it shares the same code as known

open-source TOR client implementations5.

Another Third stage plugin is built for MIPS architecture

(f8286e29faa67ec765ae0244862f6b7914fcdde10423f96595cb84ad5cc6b344). The

plugin represents itself a sniffer that looks for several interesting traffic patterns, such as:

ÌÌ 	“/tmUnblock.cgi” - a vulnerable CGI script in some Cisco/Linksys router firmware;

this executable is linked to several exploits and malicious executables, such as “Moon

Worm”, a malicious Bitcoin miner that has infected Linksys routers in the past6

ÌÌ “*modbus*\n%s:%uh->%s:%hu” - a packet used in Modbus, a standard communication

protocol, commonly used for connecting industrial electronic devices, such as PLC

ÌÌ “Basic Og==” - part of HTTP authentication packet, that

means7 “Empty username and empty password”

Other patterns related to HTTP authentication packets:

ÌÌ “Password required”

ÌÌ “Authorization: Basic”

ÌÌ “User=”

ÌÌ “user=”

ÌÌ “Name=”

ÌÌ “name=”

ÌÌ “Usr=”

ÌÌ “usr=”

ÌÌ “Login=”

ÌÌ “login=”

ÌÌ “Pass=”

ÌÌ “pass=”

ÌÌ “Password=”

ÌÌ “password=”

ÌÌ “Passwd=”

ÌÌ “passwd=”

3 https://stackoverflow.com/questions/3319521/how-can-i-match-

each-proc-net-tcp-entry-to-each-opened-socket

4 https://people.torproject.org/~nickm/tor-auto/doxygen/microdesc_8c_source.html

5 https://github.com/kaist-ina/SGX-Tor/

https://stackoverflow.com/questions/3319521/how-can-i-match-each-proc-net-tcp-entry-to-each-opened-socket

https://stackoverflow.com/questions/3319521/how-can-i-match-each-proc-net-tcp-entry-to-each-opened-socket

https://people.torproject.org/~nickm/tor-auto/doxygen/microdesc_8c_source.html
https://github.com/kaist-ina/SGX-Tor/

“VPNFilter” botnet: a SophosLabs analysis

The intercepted data is stacked into the files, formatted as:

%DIR%/rep_%NUMBER%.bin

where %DIR% is a working directory, such as /var/run/vpnfilterw.

Conclusion
VPNFilter malware is another clear demonstration of a rather philosophical paradigm: the

more IoT devices we have helping us out in our daily lives, the more advanced the CPUs

become, driving our routers, cars, refrigerators - you name it - the bigger an attack surface

becomes.

The type of CPU during the grunt work within all those devices, whether it’s ARM or MIPS

or Intel x86, doesn’t matter much, as long as they are powerful enough, and they are

becoming more powerful each day. That’s the whole gist of the evolution, and this process

won’t stop.

VPNFilter also demonstrates how the cybercriminals achieve a high degree of portability by

building their code so that it targets different architectures.

What’s still interesting in this case however, is the very possibility for an organization

or a home to become compromised by allowing a backdoor access via one of the least

suspicious devices in its possession: a little black box quietly sitting on a shelf, blinking with

its friendly green eyes.

VPNFilter isn’’t the first zombie malware to target everyday devices on everyone’’s network,

and it won’’t be the last.

6 https://isc.sans.edu/forums/diary/Whatever+Happened+to+tmUnblockcgi+Moon+Worm/19999/

7 https://chromium.googlesource.com/chromium/src/net/+/master/http/http_auth_handler_basic_

unittest.cc

United Kingdom and Worldwide Sales
Tel: +44 (0)8447 671131
Email: sales@sophos.com

North American Sales
Toll Free: 1-866-866-2802
Email: nasales@sophos.com

Australia and New Zealand Sales
Tel: +61 2 9409 9100
Email: sales@sophos.com.au

Asia Sales
Tel: +65 62244168
Email: salesasia@sophos.com

© Copyright 2018. Sophos Ltd. All rights reserved.
Registered in England and Wales No. 2096520, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP, UK
Sophos is the registered trademark of Sophos Ltd. All other product and company names mentioned are
trademarks or registered trademarks of their respective owners.

18-05-24 TP-NA (PS)

https://isc.sans.edu/forums/diary/Whatever+Happened+to+tmUnblockcgi+Moon+Worm/19999/
https://chromium.googlesource.com/chromium/src/net/+/master/http/http_auth_handler_basic_unittest.cc
https://chromium.googlesource.com/chromium/src/net/+/master/http/http_auth_handler_basic_unittest.cc

