
Sophos UTM
RESTful API

Document date: Tuesday, September 19, 2017

The specifications and information in this document are subject to change without
notice. Companies, names, and data used in examples herein are fictitious unless oth
erwise noted. This document may not be copied or distributed by any means, in whole or
in part, for any reason, without the express written permission of Sophos Limited. Trans
lations of this original manual must be marked as follows: "Translation of the original
manual".

© 2017 Sophos Limited. All rights reserved.
http://www.sophos.com

Sophos UTM, Sophos UTM Manager, Astaro Security Gateway, Astaro Command Center,
Sophos Gateway Manager, Sophos iView Setup and WebAdmin are trademarks of Sophos
Limited. Cisco is a registered trademark of Cisco Systems Inc. iOS is a trademark of
Apple Inc. Linux is a trademark of Linus Torvalds. All further trademarks are the property
of their respective owners.

Limited Warranty
No guarantee is given for the correctness of the information contained in this document.
Please send any comments or corrections to nsg-docu@sophos.com.

http://www.sophos.com/

Contents

1 Sophos UTM RESTful API 5

1.1 Nodes 5

1.2 Objects 6

1.3 References 6

1.4 Validation 6

2 Preparation 7

2.1 Basic Setup 7

2.2 Enabling the RESTful API 7

2.3 Authenticating to Sophos UTM 7

2.4 Authenticating for API calls 8

2.4.1 Username and password credentials 8

2.4.2 API tokens 8

3 HTTP header 9

3.1 Content-Type header 9

3.2 Accept header 9

3.3 Authorization header 9

3.4 X-Restd-Err-Ack header 10

3.5 X-Restd-Lock-Override header 10

3.6 X-Restd-Insert header 10

3.7 X-Restd-Session header 11

4 HTTP methods 12

4.1 GET 12

4.2 PUT and POST 13

4.3 Patch 13

4.4 Delete 13

5 Explore API 14

5.1 Swagger API documents 14

Contents

5.2 Swagger UI 14

5.3 Confd client (cc) 15

5.4 Config-watch.plx 15

6 Examples 16

6.1 Packetfilter 16

6.2 WebAdmin Port 17

7 Different Sophos UTM versions 18

7.1 Sophos UTM versions 18

7.2 Sophos UTM capabilities 18

8 References 20

iv Sophos UTM

1 Sophos UTM RESTful API
Sophos UTM provides a Representational State Transfer (REST) Application Pro
gramming Interface (API) as a way of interacting with external systems. In general,
systems that support RESTful API calls allow services or software to access or change
system resources using a predefined set of operations.

Sophos UTM supports RESTful API calls that allow you to programmatically update
policies, make configuration changes, or automatically provision a system with a
default set of rules. The purpose of the RESTful API on Sophos UTM is to help you auto
mate tasks in order to ensure your security rules are consistent and avoid human error
where possible.

For more information on RESTful APIs in general, see Wikipedia.

Sophos UTM uses a configuration management service called confd which allows
users to make configuration changes. The RESTful API service (called restd) enables
direct access to confd which allows API calls to Sophos UTM. Confd is comprised of
nodes and objects which are organized in a pre-defined hierarchy and collections
respectively.

Nodes and objects

1.1 Nodes
Nodes are resources within Sophos UTM that you can update but cannot create,
delete, or move. Nodes are organized hierarchically as in a filesystem. An example of a
node is the “Shell Access” service module within Sophos UTM (identified as the “ssh”
node). To enable the Shell Access service, you can set the ssh.status leaf node.

https://en.wikipedia.org/wiki/Representational_state_transfer

1 Sophos UTM RESTful API

Unlike filesystems which use a slash “/” to separate the different nodes, Sophos UTM
RESTful API uses a dot “.” to separate different nodes. Nodes reference objects, for
example “Shell Access” and have a leaf node of allowed_networks which is an
array of references to network objects.

1.2 Objects
Objects reside in collections, which you can create, change, or delete. The collections
of objects are predefined into classes and types. A class describes the general purpose
of the objects whereas the type describes the required data for the object. Some
objects need to be referenced by a node, to work properly (e.g. pack
etfilter/packetfilter and packetfilter/nat).

For example, one of most used class is “network”. The network class describes objects
like “host” for real hosts (e.g. 192.168.0.1) or “network” for subnets (e.g.
192.168.0.0/24). The collection of objects is always expressed with a class and a
type, e.g. “network/host” or “network/network”.

1.3 References
References are the connections between nodes and objects as well as between one
object and another object. Each confd node and object has a list of attributes with pre
defined types, where one of the types can be a reference. Please note however that
you can’t create a reference in all cases. You can only make a reference in scenarios
where nodes and objects are designed to be connected. Technically, references are
strings that always start with the prefix “REF_”.

1.4 Validation
Confd validates all nodes and objects on change operations (e.g., create, update,
delete). When you execute a RESTful API call, you may trigger some validation errors.

Validation errors are:

l fatal

l non-fatal

Fatal errors indicate a programming error like wrong input or wrong type. Non-fatal
errors indicate that the current operation has impact on other objects or nodes, which
might be harmful.

For example, if you create a rule for “packetfilter/packetfilter”, you would need to ref
erence the node “packetfiler/rules” and enable the status. If you deleted the rule after
wards, confd would detect that a referenced rule of “packetfilter/rules” was still
enabled and report an error.

For more information on validation errors, see chapter X-Restd-Err-Ack header.

6 Sophos UTM

2 Preparation
Before enabling the RESTful API, make sure you have performed a basic Sophos UTM
setup and you have set parameters such as authentication and authorization.

2.1 Basic Setup
For information and how to perform the Basic Setup in your environment, see the
Sophos UTM Quick Start Guide.

You can skip this step if you’re using Sophos UTM on AWS with AWS CloudFormation
as the CloudFormation templates preform the Basic Setup.

2.2 Enabling the RESTful API
Before making RESTful API calls to Sophos UTM, ensure that the service is enabled
and running. You can skip this step in AWS deployments because the RESTful API ser
vice is enabled by default.

1. Login to the WebAdmin GUI.

2. Go to Management > WebAdmin Settings > RESTful API.

3. Activate Enable RESTful API.

Alternatively, you can enable the RESTful API by using the cc command inside a
secure shell:

1. Login to Sophos UTM via SSH.

Note – For information on how to do this, see the UTM 9.x Administration Guides.

2. Execute the command utm:/root # cc set webadmin rest_api 1.

2.3 Authenticating to Sophos UTM
In order to make secure RESTful API calls to Sophos UTM you will have to configure
proper authentication to Sophos UTM (in general) and proper authentication for issuing
API calls.

To securely access Sophos UTM you can use the SSL certificate that is auto generated
by Sophos UTM. In most environments, the certificate is self-signed and not part of the
certificate validation change. You can follow the steps listed in Create and Import a
Public Signed Certificate for UTM Web Application Security for creating a SSL cer
tificate that is authorized by a Certificate Authority (CA).

Sophos UTM 7

2 Preparation

https://www.sophos.com/en-us/medialibrary/PDFs/documentation/sophosutmsoftwarewebadminqsgen.pdf?la=en
https://www.sophos.com/en-us/support/documentation/sophos-utm.aspx?platform=Software-UTM-9#Software-UTM-9
https://community.sophos.com/kb/en-us/118084
https://community.sophos.com/kb/en-us/118084

2 Preparation

2.4 Authenticating for API calls
You can authenticate API calls using different methods:

l Username and password credentials

l API tokens

2.4.1 Username and password credentials
Using username and password credentials, you can make API calls with a user
account that has access to Sophos UTM. Although the information is encrypted using
HTTPS, we do not recommend using username and password credentials for API calls
because revoking API access means identifying the user account and dis
abling/changing credentials.

2.4.2 API tokens
If you decide to use an API Token to authenticate, you need to create a token that can
be used for making individual API calls. To set up the token, perform the following
steps:

1. Login to the WebAdmin GUI.

2. Go to Management > WebAdmin Settings > New API Token.
The system generates a new API token, but you can create a custom token.

3. Map the token to an Sophos UTM user.

Note – This cannot be the admin user. We recommend mapping the token to a
user with reduced permissions.

4. Assign a static remote access IP to the user.

5. Under Advanced Settings, create a whitelist/blacklist based on IP addresses or
domain names.

6. Click Save.

Tip – If you are using many API tokens for backend servers, you should prefix the
tokens with an identifier e.g., “be0_” to easily distinguish between the keys.

8 Sophos UTM

3 HTTP header
The RESTful API makes use of general and custom HTTP headers to control different
aspects of the interaction.

3.1 Content-Type header
When sending data via the HTTP body to the REST API, the data has to be JSON
encoded.

content-Type: application/json

3.2 Accept header
The Accept header is used to encode the format that the client expects the server to
produce. Currently only the JSON format is supported. The server expects the client to
send the following Accept header:

Accept: application/json

3.3 Authorization header
Authorization is done using basic access authentication (see Wikipedia). The author
ization header uses username and password for authentication and is supported by
many services that use HTTP. You can use the username and password of any Sophos
UTM user who has WebAdmin access rights. For token-based authentication (see
chapter Authenticating for API calls), use the special username of “token”.

If you need to create the header manually with username and password authen
tication, use the following pseudocode as a reference:

“Authorization: Basic “ + EncodeBase64(username + “:” +
password)

If you need to create the header manually with token authentication, use the following
pseudocode as a reference:

“Authorization: Basic “ + EncodeBase64(“token:” + token)

Note – Sophos UTM 9 blocks password probing. If a system tries multiple times to con
nect to the RESTful API with a wrong username, password, or token, Sophos UTM will
block the IP address (usually for 5 minutes).

Sophos UTM 9

3 HTTP header

https://en.wikipedia.org/wiki/Basic_access_authentication

3 HTTP header

3.4 X-Restd-Err-Ack header
As described, there are multiple RESTful API interactions that can fail due to incon
sistencies, e.g., object A references object B but object B is deleted. The RESTful API
will prevent damage and inconsistency to confd by returning an error.

You can resolve this problem by removing the reference to object B. You can configure
confd to do this automatically by setting the header value to “last”.

X-Restd-Err-Ack: last

To enable this globally for all non-fatal errors, you can set the header value to “all.”

X-Restd-Err-Ack: all

Note – Use this setting only when you’re not deleting important data or objects. Other
wise, you can acknowledge the error and cancel the operation by setting the header
value to “none”. You can then troubleshoot the error with all data and objects saved.

X-Restd-Err-Ack: none

3.5 X-Restd-Lock-Override header
The confd object model supports locking objects to avoid unintended changes. To
check if an object is locked or unlocked, you can use the GET method. The response
will indicate the specific lock level, i.e., “_locked” can be set to “global”, “user”, or “”
(empty string). A “global” value is a system lock and cannot be changed. A “user” value
is a lock set by a specific user while an empty string indicates that no lock is set.

In order to change “user” lock values, you can change the lock value to an empty string
and then modify the “user” value. This procedure involves three API calls and can be
error prone if these calls are interrupted or not completed in the correct order. The
lock override header allows the users to manually override the current value without
having to change the value multiple times.

X-Restd-Lock-Override: yes

3.6 X-Restd-Insert header
In many cases when you create a new object, the object needs to be directly inserted
into a node in order to be active. This usually takes two operations; however, there is
an additional header you can use when creating objects to automatically activate the
objects. The header will insert a reference at the given position inside the node.

For example, if you create a “packetfilter/packetfilter” rule object and need to add the
object into the “packetfilter.rules” node and make it active, you can use the “1” flag to
set the rule as the first rule. If you need to add the new rule object as the last rule, you

10 Sophos UTM

can use “-1” flag. If you need the new rule object to reside somewhere in the middle,
e.g., fourth rules, you can set the flag to “4”.

X-Restd-Insert: packetfilter.rules 4

3.7 X-Restd-Session header
Each interaction with the confd creates or reuses a session. Sessions are important
for validation interaction and performance. However, maintaining sessions are
resource intensive and can degrade performance. If you use the RESTful API to auto
matically create a set or predefined rules, by default Sophos UTM will maintain those
sessions expecting additional API calls. You can close sessions if after creating your
rules you don’t anticipate subsequent API calls for the same process. At the last step,
you can set a header that will close the session.

X-Restd-Session: close

Note – X-Restd-Session: close may cause a longer time for the next request.
Be sure to only send this command with the last request.

Sophos UTM 11

3 HTTP header

4 HTTP methods

4 HTTP methods
Standard HTTP methods represent the different operations which you can do with the
RESTful API. Each operation can report different success and error status codes.

The following list is an overview of the most common status codes for these oper
ations:

Status code Description
200 OK Operation successful

201 CREATED
Operation successful and created a new resource. The newly cre-
ated resource and its path and REF_ string are returned in the
Location header

204 NO CONTENT Operation successful and returned no content, e.g. when deleting a
resource.

400 BAD
REQUEST

The request made was invalid. The body of the response contains
the error message in more detail or a resource if it is locked.

401
UNAUTHORIZED

The request is unauthorized. Add the Authorization header (see
chapter Authorization header).

403 FORBIDDEN The request is forbidden due to limited privileges.
404 NOT FOUND The requested resource was not found.
422
UNPROCESSABLE
ENTITY

The REST API can’t handle the provided content type (see chapter
Content-Type header).

503 SERVICE
UNAVAILABLE

The REST API is not enabled (see chapter Enabling the RESTful
API).

4.1 GET
GET requests are used to retrieve information. The GET request cannot modify the
data from confd.

Examples for GET calls:

GET /api/nodes

GET /api/nodes/webadmin.port

GET /api/objects/network/network

GET /api/objects/network/network/REF_NetNet100008

12 Sophos UTM

4.2 PUT and POST
You can use PUT and POST for creating new resources. POST will create a new
resource with an auto generated REF_ string whereas PUT will create resource for the
REF_ string. You can use PUT to update the same resource after creation. PUT and
POST require that you set all mandatory attributes of an object or node. You may need
to override changes by removing locks (see chapter X-Restd-Lock-Override header).

PUT /api/nodes/packetfilter.rules

POST /api/objects/packetfilter/packetfilter

PUT /api/objects/packetfilter/packetfilter/REF_
PacPacAllowAnyFTPOut

4.3 Patch
You can use PATCH requests to update fields on an existing object:

PATCH /api/objects/packetfilter/packetfilter/REF_
PacPacAllowAnyFTPOut

4.4 Delete
You can use DELETE requests to destroy object resources that were created with
POST or PUT requests.

Confd may deny DELETE requests due to validation checks. To use confd auto
correction, use the special headers described in chapter X-Restd-Err-Ack header.

DELETE /api/objects/packetfilter/packetfilter/REF_PacPacAllowAnyFTPOut

Sophos UTM 13

4 HTTP methods

5 Explore API

5 Explore API
In order to create valid API call, you can use several tools within Sophos UTM to help
structure your API calls. The tools are Swagger API Documents, Swagger UI, confd cli
ent, and config-watch.plx.

5.1 Swagger API documents
You can use the Swagger API Documents to identify all the different RESTful API end
points with descriptions for each object and node. Swagger is an open source frame
work that describes, produces, and visualizes RESTful web services for system. You
can issue the following API call to see information for different functions for Sophos
UTM:

GET /api/definitions

This returns a list of possible Swagger API definitions and you can define the call so
the results are specific to different objects or nodes:

GET /api/definitions/network

The Swagger API document contains API endpoints along with parameters and object
definitions for those endpoints. When objects have references to other objects the
type is a regular string (REF_ string). Since not all references are allowed, each object
has a description that states which subset of an object can be used as a reference. For
example, the string REF(network/*) means that all network objects can be used as ref
erences while REF(network/host) means that only network host objects can be used.

5.2 Swagger UI
Swagger UI is based on the Swagger frameworks and allows you to visualize and inter
act with different Sophos UTM API resources. The UI provides an interactive view with
drop down menus, examples, and methods to interact with the API. You can access
the Swagger UI for Sophos UTM by navigating to https://ip_address_of_
UTM:4444/api/.

Once in the Swagger UI, you can browse different nodes and objects to determine how
to make an API call for Sophos UTM. For example, if you want to create a rule to block
access on port 22, you would select packetfilter from the drop-down menu, enter your
username and password, and select explore. Swagger UI will list all the POST oper
ations you can use to interact with the packetfilter node.

From there, you can navigate to the different objects (in this example pack
etfilter/packetfilter), expand the POST and fill in parameters to block port 22. Select
Try it out! and Swagger will display its results to be used with curl. The UI also displays
Request URL, Response Body, Response Code, and Response Headers, which provide
examples on how to structure the API call.

14 Sophos UTM

https://swagger.io/

5.3 Confd client (cc)
The cc program is the command line utility used to interact with confd. cc allows nav
igation in the nodes tree as well as editing objects. You can use cc to understand an
already existing structure or prototype some node or object configurations. To start
the utility enter the cc command in an Sophos UTM shell prompt:

utm0:/root # cc

5.4 Config-watch.plx
Sophos UTM contains a tool called config-watch.plx, which monitors configuration
changes on the Sophos UTM and shows which nodes where involved or which objects
were created, changed, or deleted.

For example, to determine which RESTful API call to make in order to enable Web Fil
tering, you would perform the following steps:

1. Login to Sophos UTM via SSH.

2. Execute the file:
utm0:/root # confd-watch.plx -v

3. Login to Sophos UTM via WebAdmin.

4. Go to Web Protection > Web Filtering > Web Filtering Status > Enabled.

5. In the SSH shell, you should see the following output:
oc REF_DefaultHTTPProfile http profile status changed

status = 1

Note – Created objects are displayed as o+, changed objects are displayed as oc, and
deleted objects are displayed as o-.

Sophos UTM 15

5 Explore API

6 Examples

6 Examples
The examples in this section use curl, a command line utility that is available for
almost all operating systems to send URL-related requests.

Curl deals with HTTP and can be used in simple automation scenarios. In order to use
curl in the following scenarios, the Sophos UTM certificate needs to be stored in the
trusted certificates store.

6.1 Packetfilter
When creating a Packetfilter rule, you need to add the rule to the node that contains all
rules in the correct order. You can use a single request including X-RESTD-INSERT
header:

curl -X POST --header 'Content-Type: application/json' \

--header 'Accept: text/json' \

--header 'X-RESTD-SESSION: close' \

--header 'X-RESTD-INSERT: packetfilter.rules' \

--header 'Authorization: Basic YWRtaW46cHBwcA==' \

-d '{"action":"accept",

"destinations":["REF_NetworkAny"],

"direction":"in",

"log":true,

"services":["REF_ServiceAny"],

"sources":["REF_NetworkAny"],

"status":true}' \

'https://<UTM IP>:4444/api/objects/packetfilter/packetfilter/'

Note – The example uses the X-RESTD-SESSION: close to force closing the
remote session in order to save resources.

Deleting a packet filter rule with reference REF_PacPacXYZ.

curl -X DELETE --header 'Content-Type: application/json' \

--header 'Accept: text/json' \

--header 'X-RESTD-SESSION: close' \

--header 'X-RESTD-ERR-ACK: all' \

--header 'Authorization: Basic YWRtaW46cHBwcA==' \

16 Sophos UTM

'https://<UTM
IP>:4444/api/objects/packetfilter/packetfilter/REF_PacPacXYZ'

Note – The example uses the X-RESTD-ERR-ACK: all to automatically approve
the deletion of the object.

6.2 WebAdmin Port
Requesting the current port of the WebAdmin:

curl -X GET --header 'Accept: text/json' \

--header 'Authorization: Basic YWRtaW46cHBwcA==' \

'https://<UTM IP>:4444/api/nodes/webadmin.port'

Setting the new port

curl -X PUT --header 'Accept: text/json' \

--header 'Authorization: Basic YWRtaW46cHBwcA==' \

-d '6585' \

'https://<UTM IP>:4444/api/nodes/webadmin.port'

Sophos UTM 17

6 Examples

7 Different Sophos UTM versions

7 Different Sophos UTM versions
If you are using multiple Sophos UTM versions and the RESTful API, you should con
sider the pros and cons when choosing a versioning approach. Below are two
examples of possible versioning mechanisms.

7.1 Sophos UTM versions
With this method, you query the Sophos UTM version and RESTful API to filter the avail
able options.

Pros Cons

Simple to implement
l Doesn't scale well with multiple versions

l New capabilities in minor versions not supported

curl -X GET --header 'Accept: application/json' \

--header 'Authorization: Basic YWRtaW46cHBwcA==' \

'http://<UTM IP>/api/status/version'

7.2 Sophos UTM capabilities
You can use Swagger definitions to dynamically check the capabilities of the RESTful
API.

Pros Cons
l Codebase can support any version

l More resilient to changes
More complex to start with

You can check if the RESTful API is available with a confd call definition when there is
a new top level API call e.g. status. A value of 404 indicates that the RESTful API is not
available. A value of 200 returns the RESTful API definition.

curl https://<UTM IP>:4444/api/definitions/status

If the RESTful API is available, you can use the returned document to check the avail
ability of RESTful paths and HTTP methods. The following example uses jq in a bash
script:

#!/bin/bash

RESULT=$(curl -s https://<UTM IP>:4444/api/definitions/status |
\

jq -r '.paths["/status/version"] | has ("get")')

if ["$RESULT" == "true"]

18 Sophos UTM

then

echo "has GET version"

else

echo "has NOT GET version"

if

Sophos UTM 19

7 Different Sophos UTM versions

8 References

8 References
You can review the following references for more information and examples on using
the RESTful API for Sophos UTM:

l Ruby API Client Library: A lightweight Ruby library to use the RESTful API.

l Swagger UI: A resource to Swagger including documentation and definitions.

l Sophos Chef Cookbook: An integration of Sophos UTM with Chef that allows for
better automatic configuration.

20 Sophos UTM

https://github.com/sophos-iaas/ruby-sophos-sg-rest
https://github.com/sophos-iaas/swagger-ui
https://supermarket.chef.io/cookbooks/sophos

	1 Sophos UTM RESTful API
	1.1 Nodes
	1.2 Objects
	1.3 References
	1.4 Validation

	2 Preparation
	2.1 Basic Setup
	2.2 Enabling the RESTful API
	2.3 Authenticating to Sophos UTM
	2.4 Authenticating for API calls
	2.4.1 Username and password credentials
	2.4.2 API tokens

	3 HTTP header
	3.1 Content-Type header
	3.2 Accept header
	3.3 Authorization header
	3.4 X-Restd-Err-Ack header
	3.5 X-Restd-Lock-Override header
	3.6 X-Restd-Insert header
	3.7 X-Restd-Session header

	4 HTTP methods
	4.1 GET
	4.2 PUT and POST
	4.3 Patch
	4.4 Delete

	5 Explore API
	5.1 Swagger API documents
	5.2 Swagger UI
	5.3 Confd client (cc)
	5.4 Config-watch.plx

	6 Examples
	6.1 Packetfilter
	6.2 WebAdmin Port

	7 Different Sophos UTM versions
	7.1 Sophos UTM versions
	7.2 Sophos UTM capabilities

	8 References

