
Understanding
WebAssembly
An in-depth peek into the
VM running in modern
web browsers.
Author: Christophe Alladoum, Security Researcher,
SophosLabs

This whitepaper aims to provide a global
understanding of WebAssemble – the file format,
the instruction set, and also to analyze it from an
offensive perspective to try and determine if and
how this new format changes the attack surface
on modern web browsers.

Understanding WebAssembly

1

Table of Contents
Introduction	 2

WebAssembly	 3
Minimum Viable Product	

Instruction Set	

WebAssembly Virtual Machine	

File format	

Security of WebAssembly	 8
Vulnerabilities using WASM implementations	

Offensive WASM	

Crypto-mining	

Evasion	

Future features	

Conclusion	 13

Appendix	 13

Understanding WebAssembly

2

Introduction
In March 2017, the World Wide Web Consortium (W3C) published the first stable specification of

WebAssembly (WASM), a new format defined mostly (but not solely) for web environment. The idea

behind WebAssembly is to provide an environment for client-side application to be executed with

performance as close to native as possible.

Today, all major web browsers (Chrome, Edge, Safari, Firefox) support this format. As a matter of fact,

according to CanIUse.com, approximately 75% of web browsers, all platforms included (PC/Mac,

phones, tablets, etc.) are WebAssembly-capable. The reason for such enthusiasm stems from WASM’s

very aggressive computation performance, which allows running real-time applications or video

games entirely from the web browser, which JavaScript could never reach.

WebAssembly was built with several security considerations, that makes it impervious to trivial

attacks (like control flow hijack via return address in stack overwrite), or out-of-bounds memory

dereferencing.

Despite its presence in every major browser, WebAssembly is not very well-known by developer

and security communities. Therefore, in this paper, we will try to fill that gap by examining how

WebAssembly works, its file format, and instruction set. After detailing its internal structure when

loaded by web browsers, we’ll focus on the security of this technology, and covers some bugs present

and past in web browsers that leveraged WebAssembly to hijack the execution flow. We will also

discuss some potential existing risks in this technology, along with some paths for remediation.

Understanding WebAssembly

3

WebAssembly
WebAssembly (WASM)1 is a technology developed co-jointly by Google, Microsoft, and Mozilla – the

result of two years of work. The focus was to provide a high-performance environment for web

applications to run on, all in a contained, browser-controlled environment. It is an open W3C standard,

and the first stable release was published in March 2017, as a Minimum Viable Product.

Minimum Viable Product
The Minimum Viable Product2 provides a minimum yet complete WebAssembly environment

specification that also leaves room for future improvements within the technology itself. It is the first

version of the WebAssembly specification, and the only one modern Web browsers implement. Among

other things, the MVP declares the design of WebAssembly, including primarily:

ÌÌ The virtual machine design, and module structures

ÌÌ The instruction set

ÌÌ The file format

ÌÌ The binary encoding

Instruction Set
The WASM MVP defines a total of 172 instructions. The syntax is very RISC-like and allows you to

perform some logic and arithmetic operations (including on float IEEE 754 – 32 and 64 bits), load

(respectively store) from (resp. to) memory local or global, along with control flow instructions

(conditional branch, function call and return, conditional looping, switches). A comprehensive and

exhaustive list of all WASM instructions and their syntaxes can be found on GitHub3.

Figure 1: Examples of WASM control flow instructions

1 https://webassembly.org
2 � https://github.com/WebAssembly/design/blob/master/MVP.md
3 � https://github.com/sunfishcode/wasm-reference-manual/blob/master/WebAssembly.

md#instructions

https://webassembly.org
https://github.com/WebAssembly/design/blob/master/MVP.md

Understanding WebAssembly

4

One noticeable point lays in the fact that there is no syscall-like instruction: (to the exception of the

grow_memory and current_memory instructions, but those instructions have no effect in the MVP

1.0). Therefore, this is a strong indicator that WebAssembly was designed for computational purpose

of web applications, leaving JavaScript to handle the interactive part.

WebAssembly Virtual Machine
One key design component of the WASM is that it is upward-growing stack-based, very much like

Java or Python: simply put, a stack-based VM will rely on the stack for all its operations (function calls,

conditional branches, etc.), to the difference of register-based VM, which will define a set of registers

for this. A simple add 8,16 instruction in WASM will look as such:

CODE:0478 i32.const #8

CODE:047A i32.const #16

CODE:047C i32.add

With the result of this addition pushed onto the stack.

The VM uses a 32-bit flat address space, and uses a page granularity of 65536 bytes (64KB),

unlike typical operating system pages that are 4KB. A crucial difference with other ABIs (such as

Intel, ARM, etc.) is the fact that WASM doesn’t manipulate pointers. Consequently, there is no call

FunctionAddress instruction in WASM. Instead, WASM will define tables with indexed entries, and

calling a function means calling the index to this function. When hitting a call instruction, such design

allows the loader to check that there is an existing indexed function signature. As such this kills all

types of control flow redirection attacks (arbitrary function call, JOP/ROP), it is only possible to invoke

existing functions, and follow their execution flow.

File format
WebAssembly file format (.wasm) aims to be simple and extensible. Each WebAssembly is referred

to individually as a module. Each module must have a valid header, followed by 0 or more section as

detailed below.

Figure 2: General structure of a WASM file.

Understanding WebAssembly

5

Header

The WebAssembly header is a static 8-byte field that starts with the magic DWORD 0x00617364 (or

\0asm in ASCII) followed by the compatibility version of the module encoded as a DWORD. Today, only

the value 1 exists and is valid.

Sections
A section comprises a header and payload part: the header holds a unique identifier, the section code,

which is a 1-byte integer that states the nature of the current section, and dictates the structure of

the payload. According to the specification, a WASM module cannot have more than one section with

the same code, to the exception of the Custom section identifier (value 0). Such sections are uniquely

identified by the section name, which must be explicitly present in the section header.

Currently sections are heavily encoded using Variable-Quantity Length4 format, which helps

compressing partially the volume. Future specification may introduce section compression

mechanism.

Figure 3: WASM section structure.

The MVP documents nine non-custom sections, including:

ÌÌ Function section​: defines the signature of all the functions in the current WASM module​. A
signature consists in the number and type of arguments (0 or more)​, along with the number
and type of return value (at most 1)​. The signatures are stored in the Function Index Space.

ÌÌ Code section​ defines the bytecode of all the functions​, whose signatures were defined
in the Function section. Code and Function sections are intrinsically linked​.

ÌÌ Global section defines all the global variables of the module,
which are stored in the Global Index Space.

ÌÌ Export (resp. Import) section declares all objects (functions, global, memory) to be exported ​
(resp. imported). Exported objects are referenced by the indexes in their index space.

ÌÌ Start section refers to a function index that should be called
after the WASM module was instantiated.

ÌÌ Memory section corresponds to the declaration of the internal linear memory.

4 https://en.wikipedia.org/wiki/Variable-length_quantity

https://en.wikipedia.org/wiki/Variable-length_quantity

Understanding WebAssembly

6

ÌÌ A basic WASM module would look be coded as follow:

(module

 (import stdlib print (func $print (param i32 i32)))

 (import js memory (memory 20)) ;; initial allocation of 20 pages

 (data (i32.const 0) Hello world!”) ;; store string in data segment at

offset=0 (length=strlen(“Hello world!”)=12)

 (func (export main”)

 i32.const 0 ;; offset=0

 i32.const 12 ;; length=12

 call $print

)

)

Which once compiled with wat2wasm from WebAssembly Binary Toolkit5 would produce the following

binary file:

00000000: 0061 736d 0100 0000 0109 0260 027f 7f00 .asm.......`....

00000010: 6000 0002 1d02 0673 7464 6c69 6205 7072 stdlib.pr

00000020: 696e 7400 0002 6a73 066d 656d 6f72 7902 int...js.memory.

00000030: 0014 0302 0101 0708 0104 6d61 696e 0001 main..

00000040: 0a0a 0108 0041 0041 0f10 000b 0b12 0100 A.A........

00000050: 4100 0b0c 4865 6c6c 6f20 576f 726c 6421 A...Hello World!

A Kaitai6-based parser for the WebAssembly format was published on the GitHub repository (you’ll

find a link in the appendix) to help improving the visualization of all the different sections of WASM. An

IDA Pro loader and processor can be found in the same repository to assist analysts in the process of

auditing potentially hostile WASM code.

5 https://github.com/WebAssembly/wabt
6 https://kaitai.io

https://github.com/WebAssembly/wabt
https://kaitai.io

Understanding WebAssembly

7

Figure 4: WASM parser for Kaitai.

Security of WebAssembly
The MVP dedicates an entire section7 to the security consideration around WASM. It should prevent

malicious modules from escaping the sandboxed environment from where it executes. In addition,

two WASM modules loaded are viewed as separate (in the context of the process memory layout), and

can only interact when explicitly allowed by developers.

Also, because each module runs within the context of the DOM, several HTTP properties must be

assured, such as the respect of the Same-Origin Policy (SOP). However, today the Content Security

Policy (CSP) is not properly considering the execution of WASM modules: it assumes that JavaScript

is responsible of loading and running WASM code, and therefore leaving the CSP filtering at the

JavaScript level. This might become problematic in the near future, as the next releases of the

specification will allow HTML code to invoke WASM directly via a dedicated <script> type (more

similar examples will be detailed in the Future features sub-section below).

The WASM VM provides some intrinsic properties to avoid common low-level programming mistakes

to be exploitable:

ÌÌ The Code (among other sections) is immutable: it is not possible
to create new code from inside the sandbox

ÌÌ Some Control-Flow Integrity (CFI) is provided by the fact that pointers have no
significant meaning in WASM (i.e. the memory cannot be dereferenced). As a
reminder, this is provided by the Index Space mechanism, that immediately
(i.e. from the initialization) allows detecting access to incorrect offsets.

7 � https://github.com/WebAssembly/design/blob/master/Security.md

https://github.com/WebAssembly/design/blob/master/Security.md

Understanding WebAssembly

8

Figure 5: Extract of ChakraCore source code: initialization of WASM functions.

ÌÌ A separate stack is used to store the return pointer (and some additional information).
Even if stack smashing attacks are achievable, only application data will be overwritten.

What this means is that although WebAssembly cannot protect against poorly written code (security-

wise), exploiting those weaknesses would not at all compromise the web browser’s security. All those

built-in features provide strong protections natively from memory corruption attacks:

ÌÌ A stack overflow in the code would not lead to the corruption of
the return address (and hijack of the execution flow).

ÌÌ Traditional ROP/JOP exploitation technique would not work either.

ÌÌ Out-of-bounds accesses can be detected and trapped at runtime,
triggering an OOB memory error in JavaScript.

Vulnerabilities using WASM implementations
In the last few years, only a few bugs were found leveraging WebAssembly, and interestingly they all

target the implementations (in V8, ChakraCore, or JSC), not the protocol. Among those vulnerabilities,

we can quote:

ÌÌ CVE-2017-5116

ÌÌ Chrome-766253

ÌÌ Project Zero P0-1522

ÌÌ Project Zero P0-1545

ÌÌ Project Zero P0-1526

Understanding WebAssembly

9

ÌÌ They are however very interesting to examine on technical perspective, as their exploitation

is not exactly trivial, and diverge from traditional web browsers vulnerabilities (type

confusion, Use-after-Free, Double-Free, etc.) CVE-2017-51168 is a good example of this:

as part of their exploit chain for the Google Pixel, Qihoo 360 discovered and exploited the

fact that WebAssembly.Module were backed by a JavaScript SharedArrayBuffer,

which allows concurrent access to a specific memory location by 2 (or more) threads. This

resulted in a TOCTOU race condition, where it was possible to change 1 byte of code after

the WASM module check but before the code gets JIT-ed. As a result, it was possible to use

the WASM code to read and write outside of the WASM environment, bypassing ASLR.

Although this CVE offers a great exploitation example of how to leverage WASM for web browser

exploitation, modern browsers cannot be impacted from this bug or other similar because properties

such as SharedArrayBuffer are disabled by default (as part of Spectre9 mitigations), killing any

sort of race conditions. In addition, WASM implementations in all major browsers are actively tested

(through code instrumentation based fuzzing, like AFL 10or LibFuzzer11).

During our research, no major bug was found within the WASM implementations of the major Web

browsers, assessed through both static code reviews and fuzzing. Since WebAssembly provides a

specification that defines strictly the behavior, the attack surface is rather limited. Although some

implementations (such as V8 or Chakra) performs strict checks during the module initialization,

emitting a JavaScript exception upon failure, JavaScriptCore prefers a more drastic approach by

simply killing the contained process (by dereferencing an invalid address) if ever faulty code is found:

Figure 6: Crash in JSC found using AFL.

Although extreme, this is another indicator that the code was designed with security in mind, by not

letting an attacker take advantage of an uncertain memory state.

8 �https://android-developers.googleblog.com/2018/01/android-security-ecosystem-investments.
html

9 https://meltdownattack.com
10 http://lcamtuf.coredump.cx/afl/
11 https://llvm.org/docs/LibFuzzer.html

https://android-developers.googleblog.com/2018/01/android-security-ecosystem-investments.html
https://android-developers.googleblog.com/2018/01/android-security-ecosystem-investments.html
https://meltdownattack.com
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html

Understanding WebAssembly

10

Figure 7: Extract from JavaScriptCore showing the invalid dereference.

Offensive WASM

Cryptomining
As part of web browsers, the performance of WASM makes it a target of choice for web-based

cryptomining campaign. Internal tests have shown that (depending on the specific implementation)

WASM code could execute pure computation operations (in our tests – SHA1 and SHA256) almost as

fast as non-optimized code.

Some open source cryptominers can already be downloaded from GitHub1213, and it is very likely to

see more in the near future.

Unfortunately differentiating two WASM modules (say for instance a cryptominer and a real-time

application) is not trivial and could be subject to false positive: the produced binary code could have

been obfuscated by a compiler, making it hard to retrieve static information; and the lack of syscall

prevents a fully dynamic detection. An ultimate resort would be to disable WASM altogether, but to

this day, only Chrome and Firefox allow this.

12	 https://github.com/burland/cryptonight
13	 http://www.wasmrocks.com/topic/196/javascript-emscripten-bitcoin-miner

https://github.com/burland/cryptonight
http://www.wasmrocks.com/topic/196/javascript-emscripten-bitcoin-miner

Understanding WebAssembly

11

Evasion
Another offensive use case for WebAssembly could be for defense mechanism evasion, such as

WAFs or certain IDs, which use pattern-based engines. Using the C language and a compiler such as

EmScripten, it becomes trivial to transform and obfuscate a JavaScript script to be eval-ed. It should

however be noted that by specification (and confirmed on all implementations tested), the WASM

modules are subject to the same Content Security Policies (CSP), and to the SOP: therefore, this risk

could be mitigated by setting finely-tuned CSP rules.

Future features
WASM MVP was meant to be a first stable release of the new WebAssembly ecosystem, and as such,

was built to be extensible to new features brought by newer versions of the specification. Some

new improvements are already being discussed14 and beta-tested in the bleeding-edge versions of

browsers.

Among the most interesting improvements, we can find:

ÌÌ On-demand memory allocation: implementing a mmap()-like operation (munmap() too).
This would also introduce to WASM the concept for permission (mprotect()-like).

ÌÌ 64-bit BigInt support.

ÌÌ SIMD (Single Input Multiple Output) for 128-bit floats

ÌÌ Multi-threading

ÌÌ Mutable Import/Export global

ÌÌ ECMAScript module support, to run WebAssembly module directly from HTML <script> tags.

This brings a whole new set of questions to the WebAssembly memory model which may introduce

new bugs.

14 https://github.com/WebAssembly/design/blob/master/FutureFeatures.md

https://github.com/WebAssembly/design/blob/master/FutureFeatures.md

Understanding WebAssembly

United Kingdom and Worldwide Sales
Tel: +44 (0)8447 671131
Email: sales@sophos.com

North American Sales
Toll Free: 1-866-866-2802
Email: nasales@sophos.com

Australia and New Zealand Sales
Tel: +61 2 9409 9100
Email: sales@sophos.com.au

Asia Sales
Tel: +65 62244168
Email: salesasia@sophos.com

© Copyright 2018. Sophos Ltd. All rights reserved.
Registered in England and Wales No. 2096520, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP, UK
Sophos is the registered trademark of Sophos Ltd. All other product and company names mentioned are
trademarks or registered trademarks of their respective owners.

2018-08-06 TPNA (NP)

Conclusion
Despite a slow adoption, WebAssembly may become very popular in future web applications as it

fills one major gap JavaScript never could: providing a simple but efficient platform for client-side

computations. Its first specification, the MVP, provides a complete environment for applications to run

on, and can be easily be extended to support more features. Security was not left out as the WASM

format prevents, by essence, certain types of memory corruption or control flow hijacking attacks. In

addition, the WASM modules implemented in every modern browser were tested and only few minor

bugs were found during this research.

Nevertheless, it should be noted that WASM adds a non-negligible level of complexity for existing

protection software (WAF, web browser dynamic analysis tool) by enabling innovative ways of code

obfuscation, making hostile client-side code harder to detect.

Possible mitigations for that situation must come at two levels: first, the creation of an offline VM15

to run the potentially malicious WASM code in a contained and confined environment. Second, the

current tools (IDA, WABT, EmScripten) must be improved to assist in the static analysis process of

WASM modules.

Appendix
Additional links:

ÌÌ https://github.com/Sophos/WebAssembly/

ÌÌ https://mbebenita.github.io/WasmExplorer/

ÌÌ https://webassembly.studio/

ÌÌ https://wasdk.github.io/WasmFiddle/

ÌÌ https://github.com/kripken/emscripten

ÌÌ https://github.com/WebAssembly/wabt

15 Basic tests have shown that such analysis can be possible by patching the WAVM project.

https://github.com/Sophos/WebAssembly/
https://mbebenita.github.io/WasmExplorer/
https://webassembly.studio/
https://wasdk.github.io/WasmFiddle/
https://github.com/kripken/emscripten
https://github.com/WebAssembly/wabt

